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Abstract

Social punishment (SOP)—third-party punishment (TPP) and second-party punishment
(SPP)—sanctions norm-deviant behavior. The hierarchical punishment model (HPM)
posits that TPP is an extension of SPP and both recruit common processes engaging large-
scale domain-general brain networks. Here, we provided meta-analytic evidence to the HPM
by combining the activation likelihood estimation approach with connectivity analyses
and hierarchical clustering analyses. Although both forms of SOP engaged the dorsolateral
prefrontal cortex and bilateral anterior insula (Al), a functional differentiation also emerged
with TPP preferentially engaging social cognitive regions (temporoparietal junction) and SPP
affective regions (Al). Further, although both TPP and SPP recruit domain-general networks
(salience, default-mode, and central-executive networks), some specificity in network
organization was observed. By revealing differences and commonalities of the neural
networks consistently activated by different types of SOP, our findings contribute to a better
understanding of the neuropsychological mechanisms of social punishment behavior—one of

the most peculiar human behaviors.
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Introduction

In a highly complex social world, norms are necessary to govern and organize the
multifaceted dynamics of interpersonal interactions (Bicchieri, 2014). However,
establishing a set of norms is not sufficient to guarantee everybody’s compliance (Fehr
and Fischbacher, 2004a, b). As opposed to self-punishment, social punishment (SOP)
sanctions deviant behavior that violates the group’s social norms. Individuals punish
transgressors to enforce these social norms even when punishment is costly (Dawes et al.,
2007; Seymour et al., 2007). SOP takes two essential forms: second-party punishment
(SPP) and third-party punishment (TPP) (Fehr and Fischbacher, 2003; Fehr and Géchter,
2002). Both require that the norm-enforcer recognizes the intention of the offender and the
harm inflicted onto the victim. These evaluations are then integrated into estimations of
the transgressor’s blameworthiness to assign the appropriate punishment (Buckholtz and
Marois, 2012). However, TPP and SPP differ in the target of the wrongdoing. In SPP,
victim and punisher are the same person, while in TPP the victim is another person than
the impartial, third-party judge. Previous work has suggested this difference is reflected in
the different neuropsychological processes engaged by SPP and TPP.

Psychophysiological evidence suggests the emotional reaction of the
victim/punisher to the inflicted harm is an essential component of SPP. For instance,
punishing others for their unfairness increases skin conductance response (SCR, a
measure of emotional activation), and higher emotional states are reported during
punishment of unfair behaviors (van 't Wout et al., 2006). Interestingly, SCR increases
only when the punisher is also the target of the unfair act but not when the unfair act
affects someone else (Civai et al., 2010). These results concur with neuroimaging research
pointing to neural activations during punishment of unfairness in the anterior insula (Al)
(Sanfey et al., 2003)—a brain region associated with aversive experiences (Craig, 2002;

Damasio et al., 2000). Crucially, activity in the Al is linearly related to punishment of
3
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unfair behaviors, suggesting that this region plays an essential role in SPP (Tabibnia et al.,
2008).

On the contrary, the intentions of a wrongdoer are central to TPP to determine the
transgressor’s responsibility for the appropriate punishment. Thus, impartial third-party
judges punish intentional unfair behaviors more than unintentional unfair behaviors
(Blount, 1995; Falk et al., 2008) and rely on mentalizing regions during their punishment
decisions, such as the posterior temporoparietal junction (pTPJ)—a region involved in
inferences on others’ intentions (lgelstrom and Graziano, 2017; Igelstrom et al., 2015;
Saxe and Kanwisher, 2003; Saxe and Powell, 2006). For instance, the pTPJ plays an
important role in third-party decisions to punish in- and outgroup members (Baumgartner
et al., 2012; Baumgartner et al., 2014). Furthermore, impartial third-party judges recruit
the lateral prefrontal cortex (LPFC) when they assess responsibility in norm violations
(Zhong et al., 2016) or need to distinguish between contextual situations on the basis of
criminal responsibility (Buckholtz et al., 2008). This evidence suggests that the LPFC is
involved in the decision on the punishment that best aligns with the transgressor’s
blameworthiness.

However, this evidence is at odds with other findings. For instance, second-party
punishers also evaluate the transgressor’s responsibility before a punishment decision and
third-party punishers respond emotionally to a transgression as well (Civai, 2013; de
Quervain et al., 2004; Egas and Riedl, 2008; Fehr and Gachter, 2002). Moreover, Al
activations have been observed for norm violations in both SPP and TPP irrespective of
the target of the violation (Civai et al., 2012; Corradi-Dell'Acqua et al., 2013) and even
for one’s own wrongdoing (Giiroglu et al., 2010). These findings indicate that the Al
rather signals the violation of a norm —a computation required for the determination of
the proper penalty in both SPP and TPP. Similarly, the LPFC has been linked to

enforcement of social norm compliance in SPP (Ruff et al., 2013) and disruption of the

4



97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

dorsal LPFC of second-party punishers reduces punishment of unfairness (Knoch et al.,
2006). This evidence indicates that the LPFC takes a role in the implementation of norm-
enforcing behaviors —a process required in both forms of SOP.

An alternative view on the processes underlying punishment behaviors has been
put forward by the hierarchical punishment model (HPM) (Krueger and Hoffman, 2016).
The HPM posits that SPP draws on a rudimental form of first-party punishment (i.e.,
conscience and guilt), while TPP emerges as an extension of SPP, allowing for a
generalized norm-enforcing behavior in genetically heterogeneous societies. Accordingly,
TPP is supposed to piggyback on a set of processes already engaged by SPP, and SPP
relies on core processes already engaged by first-party punishment. Previous studies have
provided preliminary evidence on neural commonalities underlying different forms of
social punishment (Stallen et al., 2018; Zinchenko, 2019). The difference between TPP
and SPP does not rely in their different cognitive processes but in how these processes are
engaged. SPP places more weight on the harm of a norm violation engaging affective
processes to signal its aversive and threatening nature. On the contrary, TPP relies more
on the intentions behind a norm violation requiring perspective-taking abilities to mentally
represent internal states and external circumstances of a self-unrelated situation. This
hypothesis is consistent with phylogenetic and ontogenetic evidence that TPP is rare or
non-existent in non-human primates and small-scale societies (Guala, 2012; Riedl et al.,
2012) and emerges in humans after age six when mentalizing abilities are fully developed
(Frith and Frith, 2003; McAuliffe et al., 2015; Mendes et al., 2018).

On the neural level, the HPM proposes three domain-general large-scale networks
as underlying SOP. The salience network (involving the Al and anterior cingulate cortex,
ACC) signals the norm violation and weights the severity of the inflicted harm. The
default-mode network (including the medial PFC and pTPJ) evaluates the perpetrator’s

intentions and integrates harm and intent for assessment of blameworthiness. Finally, the

5



123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

central-executive network (anchored in the LPFC) converts blameworthiness evaluations
into a punishment decision.

In this study, we investigated whether TPP and SPP engage different brain
mechanisms associated with putatively different cognitive processes. First, we identified the
meta-analytic brain regions consistently activated by SPP and TPP, implementing the
activation likelihood estimation (ALE) method (Eickhoff et al., 2009). Second, we determined
the consensus connectivity networks of the emerging meta-analytic brain regions underlying
SPP and TPP and their sub-network compositions, employing connectivity analyses (i.e.,
task-based meta-analytic connectivity mapping, MACM, and task-free resting-state functional
connectivity, RSFC) and hierarchical analysis (Eickhoff et al., 2018; Goodkind et al., 2015;
Hardwick et al., 2015; Kolling et al., 2016; Wang et al., 2015). These analyses allowed us to
first delineate the connectivity profiles of TPP and SPP brain regions, their overlap and
specificity, and then their functional roles with the help of functional decoding analyses

(Genon et al., 2018).
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Materials and Methods

Literature search and selection

A systematic online database search was performed on PubMed and Google Scholar by
entering various combinations of relevant search items referring to punishment behaviors (up
to the December 2, 2018). The following keywords were used for the search: *altruistic
punishment’, ‘third-party punishment’, ‘second-party punishment’, ‘punishment’, ‘modified
Ultimatum Game’ and ‘modified Dictator Game’, in combination with ‘fMRI’, ‘magnetic
resonance imaging’, and ‘neuroimaging’, ‘PET’, ‘positron emission tomography’. Note that
economic games and vignettes were included for the TPP studies. In economic game studies,
participants in general face an unfair monetary distribution executed by another player (the
transgressor) that they can punish by spending some of their endowment to diminish the
transgressor’s payoffs (i.e., costly punishment). On the contrary, vignettes studies present in
general participants with descriptions of various legal/moral transgressions and participants
must decide how much to punish the transgressor (i.e., hypothetical punishment). To be able
to capture neural activity specifically related to the different forms of punishment, this meta-
analysis included only contrasts during the decision phase that singled out the neural
underpinnings of a third-party/second-party decisions (e.g., punishment vs. no
punishment/baseline condition, TPP vs. SPP or SPP vs. TPP, reject vs. accept in economic
games) as opposed to other types of decisions as well as correlations of neural signal with the
amount of punishment/rejection rates (see Supplemental Material. List of Studies).

In addition, several other sources were explored, including (a) the BrainMap database
(http://brainmap.org), (b) work cited in review papers, and (c) direct searches on the names of
frequently occurring authors. The searched studies were further assessed according to the
following criteria: (i) participants were free from psychiatric or neurological diagnoses; (ii)

participants were adults; (iii) no pharmacological modulations were reported; (iv) fMRI was
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used as the imaging modality (no PET studies were found under the searched terms); (v)
whole-brain analyses were applied (excluding region of interest [ROI] analyses) to reduce the
inclusion of false positives; (vi) fMRI results were derived from a general linear model based
on either a binary contrast or parametric analyses; and (vii) activations were presented in a
standardized stereotaxic space (Talairach or Montreal Neurological Institute, MNI). Note that
for studies reporting Talairach coordinates, a conversion to the MNI coordinates was
implemented in the GingerALE software (https://www.brainmap.org/ale/) with the Brett’s

algorithm.

Activation likelihood estimation (ALE) method
The ALE meta-analysis follows previous work published by our group (Bellucci et al., 2017b;
Bellucci et al., 2018). The ALE algorithm (using in-house MATLAB scripts) was employed
to investigate the coordinate-based, consistent, meta-analytic activations across studies
examining neural responses associated with SOP decisions (Eickhoff et al., 2012; Eickhoff et
al., 2009; Eickhoff et al., 2016). ALE determines the convergence of foci reported from
different functional (e.g., blood-oxygen-level dependent [BOLD] contrast imaging)
neuroimaging studies with published foci in Talairach or MNI space (Laird et al., 2005;
Turkeltaub et al., 2002). Reported foci are interpreted as spatial probability distributions in the
ALE framework. Their widths refer to the empirical estimates of the spatial uncertainty based
on between-subjects and between-templates variability of the neuroimaging data (Eickhoff et
al., 2009). To weight the between-subject variability, the number of subjects analyzed in
studies is considered by the ALE algorithm. The assumption is that more reliable
approximation to the ‘true’ activation are given by larger sample sizes. Thus, these samples
are modelled with smaller Gaussian distributions (Eickhoff et al., 2009).

An ALE map across studies is obtained by calculating the union of the individual

modulated activation maps created from the maximum probability associated with any one
8
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focus (always the closest one) for each voxel (Turkeltaub et al., 2012). This ALE map is
determined against a null-distribution of random spatial association between studies
employing a non-linear histogram integration algorithm (Eickhoff et al., 2012; Turkeltaub et
al., 2012). Results were thresholded for significance using a cluster-level family-wise error
(FWE) correction at P < 0.05 with a cluster defining threshold of P < 0.001 and 10,000
permutations (Eickhoff et al., 2012; Eklund et al., 2016). Moreover, to meet criteria of robust
unbiased results, clusters were only considered significant if the most dominant experiment
(MDE) contributed to the significant cluster on average less than 50% and the two MDEs
(2MDEs) contributed on average less than 80% (Bellucci et al., 2017b; Bellucci et al., 2018;
Eickhoff et al., 2016). For experiments’ contributions, the fraction of the ALE value
accounted for by each experiment contributing to the cluster was computed. This average
non-linear contribution of each experiment to the ALE value was computed from the ratio of
the ALE values at the location of the cluster with and without the experiment in question
(Eickhoff et al., 2016).

A total of 47 experiments (see Supplemental Material. List of Studies) examining SOP
with a total of 312 foci across 1,188 subjects were identified, including a total of 22
experiments for SPP (139 foci, 598 subjects, average of 27.2 subjects per experiment) and a
total of 25 experiments for TPP (173 foci, 590 subjects, average of 23.6 subjects per
experiment). Among these, eight experiments were from articles investigating both SPP and
TPP in the same sample. Three main effect analyses for SOP (the pooled analysis of SPP and

TPP), SPP and TPP, and two contrast analyses for SPP > TPP and TPP > SPP were performed.

Task-based, meta-analytical connectivity modeling (MACM) analysis
To investigate the meta-analytic co-activation profiles of punishment decisions, MACM

analyses were conducted using the peak coordinates of each significant brain region identified
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from the three previous ALE analyses for SOP, SPP and TPP as seed regions (i.e., sphere
radius =5 mm as in previous studies) (Camilleri et al., 2018; Langner et al., 2014).

The BrainMap database (http://www.brainmap.org/) was used (Laird et al., 2009a),
which at the time of assessment contained coordinates of reported activation foci and
associated meta-data of approximately 14,720 neuroimaging experiments pertaining to
“normal mapping” analyses. For SOP, the MACM analyses were based on the following
experiments, foci, and number of subjects for each of the following seed regions: left Al (618
experiments | 9,282 foci | 9,318 subjects), right Al (547 | 8,053 | 8,220 ), and left dorsolateral
PFC (DLPFC; 116 | 1,655 | 1,818). The MACM analyses for SPP were based on the left Al
(557 | 8,422 | 8,465) and the right Al (510 | 7,715 | 7,731) as seed regions, whereas for TPP on
the left pTPJ (98 | 1,400 | 1,506) and the left ventrolateral PFC (VLPFC; 182 | 2,310 | 2,747)
as seed regions.

In brief, whole-brain peak coordinates of all those studies from BrainMap that
reported at least one focus of activation within the respective ROIs were downloaded. Next,
coordinates were analyzed with the ALE algorithm to detect areas of convergence of co-
activations with those seeds. Finally, the ALE maps were thresholded at P < 0.05 cluster-level
corrected (cluster-forming threshold: P < 0.001 at voxel-level) and converted into z-scores for

display (Bellucci et al., 2018; Camilleri et al., 2018).

Task-free, resting-state functional connectivity (RSFC) analysis

To investigate the FC profiles of punishment decisions, RSFC analyses were conducted using
the peak coordinates of each significant brain region identified from the three previous ALE
analyses for SOP, SPP and TPP as seed regions (i.e., sphere radius = 5 mm as in previous
studies). RS-fMRI images of 192 healthy volunteers were obtained from the Enhanced Nathan
Kline Institute — Rockland Sample (Nooner et al., 2012). Images were acquired on a Siemens

TimTrio 3T scanner using BOLD contrast [gradient-echo EPI pulse sequence, TR =1.4s, TE

10
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= 30 ms, flip angle = 65, voxel size = 2.0 mm x 2.0 mm x 2.0 mm, 64 slices]. Physiological
and movement artifacts were removed from the resting-state data by using FIX (FMRIB's
ICA-based Xnoiseifier, version 1.061 as implemented in FSL 5.0.9) (Griffanti et al., 2014;
Salimi-Khorshidi et al., 2014) and data were further preprocessed using SPM8 (Wellcome
Trust Centre for Neuroimaging, London) and in-house MATLAB scripts, following
previously employed processing procedures (Camilleri et al., 2018; Satterthwaite et al., 2013).

The processed time-course of each seed (sphere radius = 5 mm) was then correlated
with the (identically processed) time-series of all other gray-matter voxels in the brain using
linear (i.e., Pearson) correlation. The resulting correlation coefficients were transformed into
Fisher's z-scores, which were entered in a second-level ANOVA for group analysis including
age and gender as covariates of no interest. The data was then subjected to non-parametric
permutation based inference and thresholded at P < 0.05 corrected for multiple comparisons

on the cluster level.

Consensus connectivity map

After having identified brain areas showing task-based co-activation (i.e., MACM) and task-
free FC (i.e.,, RSFC) FC our seed regions, conjunction analyses were performed across the
MACM and RSFC maps for each seed using the minimum statistic (Nichols et al., 2005). This
resulted in three consensus connectivity maps (i.e., SOP, SPP, TPP) that yielded brain regions
consistently interacting with each seed across different brain states (Clos et al., 2014;
Hardwick et al., 2015). An extent-threshold of 10 continuous voxels was applied to exclude
smaller regions of putatively spurious overlaps. The decision to use this exact number of
voxels was indeed arbitrary but reflects standard procedures used in previous work (Camilleri

etal., 2018).

Hierarchical cluster analysis of SPP and TPP regions
11
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To identify potential cliques among the networks of each brain region for SPP and TPP,
hierarchical cluster analyses were performed using their RSFC patterns (Camilleri et al.,
2018). Using the FSLNets toolbox (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets), RSFC
between all regions of the identified SPP and TPP networks was computed. Partial temporal
correlations between all regions' time series data were computed to estimate pairwise
functional connectivity (Marrelec et al., 2006). For each pairwise connection, Fisher's z—
transformed functional connectivity values were submitted to one-sample t-tests. The
resulting t values, reflecting connection strength as well as consistency across the sample,
were z-transformed (into units of the standard normal distribution). This connectivity matrix
was then fed into the WARD clustering.

Of note, all features entered the analyses without any thresholding for significance,
which is a distinction from the analyses described above but necessary to preserve the full
pattern of the respective connectional and functional profiles. The concept behind hierarchical
clustering is to group the initial elements (regions) in a stepwise fashion such that elements
within a cluster have features that are as homogeneous as possible while different clusters are
maximally distinct from each other. This was achieved through an agglomerative approach in
which clusters initially formed by individual regions that are subsequently merged according
to their similarity using standardized Euclidean distances and Ward's incremental sum of
squares method (Eickhoff et al., 2011; Timm, 2002). This hierarchical approach then revealed
cligues of SPP and TPP regions at different levels of granularity. Average Euclidean distances

(EDs) and standard deviations (SDs) were provided for each hierarchical cluster.

Functional characterization of punishment brain regions
The functional profiles of the observed meta-analytic brain regions were characterized based
on the behavioral domain (BD), which describes the categories (i.e., action, cognition,

emotion, interception, and perception) and subcategories (e.g., reward, language, social
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cognition, pain, among others) of the mental operations likely isolated by the experiments in
the BrainMap database (Fox and Lancaster, 2002; Fox et al., 2014; Laird et al., 2009b). This
functional characterization was based on forward inference with the aim to identify all
experiments that engage a particular region of interest, and then analyze the experimental
meta-data describing the experimental settings employed in these experiments (Miiller et al.,
2013; Rottschy et al., 2012). This allows statistical inference on the type of tasks that evoke
activations in a brain region.

In this forward inference approach, the functional profile was determined by
identifying BD for which the probability of finding activation in the respective region/set of
regions was significantly higher than the overall (a priori) chance across the entire database.
That is, it was tested whether the conditional probability of activation given a particular BD,
i.e., P(Activation|Domain), was higher than the baseline probability of activating the region(s)
in question per se, i.e., P(Activation). Significance was established using a binomial test using

the standard a = 0.05, corrected for multiple comparisons using false discovery rate (FDR).
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Results

ALE analysis

A total of 47 experiments were identified, 22 for SPP and 25 for TPP. We first investigated
the consistent neural patterns activated for SOP (i.e., pooled analysis across SPP and TPP).
The analysis revealed three regions: left Al (17 contributing experiments; i.e., 36.2% of the
total experiments, MDE=10.34%, 2MDEs=20.17%), right Al (13 contributing experiments;
i.e., 27.7% of the total experiments, MDE=14.87%, 2MDEs=28.48%), and left DLPFC (6
contributing experiments; i.e., 12.8% of the total experiments, MDE=32.36%,
2MDEs=54.21%) (Tab. 1 & Fig. 1A). Examining the experiments contributing to the
activation in the left and right Al as well as left DLPFC, 8 out of 18 (44.4%), 5 out of 13
(38.5%), and 4 out of 6 (66.7%) experiments investigated TPP, respectively (Tab. S1). These
results indicated a certain degree of meta-analytic convergence of both SPP and TPP studies
on common brain regions in the insular and lateral prefrontal cortices. Next, separate meta-

analytic analyses were run to identify the specific meta-analytic clusters for SPP and TPP.

The single meta-analysis for SPP revealed consistent activations in bilateral Al (left:
10 experiments, i.e., 45.5% of total experiments, MDE=16.38%, 2MDEs=32.49%; right: 8
experiment, i.e., 36.4% of total experiments, MDE=19.06%, 2MDEs=37.29%) (Tab. 1 &
Tab. S2 & Fig. 1B), while the single meta-analysis for TPP showed consistent activations in
the left VLPFC (5 experiments, i.e., 20.0% of total experiments, MDE=31.65%,
2MDEs=60.25%) and pTPJ (5 experiments, i.e., 20.0% of total experiments, MDE=32.36%,
2MDEs=59.33%) (Tab. 1 & Tab. S2 & Fig. 1C). Follow-up contrast analyses revealed that

the right Al was more strongly activated by SPP than TPP. These single meta-analyses mirror
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the results of the previous pooled meta-analysis. In fact, in the latter the bilateral Al revealed
a higher proportion of contributions from SPP studies, while the left LPFC from TPP studies.
Moreover, a conjunction analysis revealed that the SOP clusters in bilateral Al largely overlap
with the insular clusters observed in the SPP analysis (Fig. 1D). Hence, both analyses support
the hypothesis that punishment decisions rely on common brain regions differently engaged

by SPP and TPP.

MACM (task-based co-activation) and RSFC (task-free functional connectivity) analysis
To characterize the functional profile of the observed meta-analytic patterns, we first analyzed
their functional connectivity fingerprinting. To this end, we analyzed the connectivity profiles
both at rest and across different tasks, as the good match between resting-state connectivity
patterns and activation patterns across tasks seems to reveal the underlying functional
hierarchy of specific brain regions, which is highly informative of their functional role (Cole
et al., 2014; Raichle, 2015; Smith et al., 2009; Tavor et al., 2016). The task-based co-
activation (i.e., MACM) analyses revealed similar neural patterns for the bilateral Al
(identified as seed regions in both the pooled analysis for SOP and the single meta-analysis
for SPP), including lateral frontoparietal brain regions (e.g., DLPFC, inferior parietal lobule,
IPL, pTPJ [peak in the supramarginal gyrus], medial prefrontal regions (e.g., middle cingulate
cortex , MCC, temporal areas), subcortical brain regions (e.g., striatum) (Tab. S3 & Fig. S1
& Fig. S2).

The task-free functional connectivity (i.e., RSFC) analyses demonstrated similar
findings with additional connectivity pattern in somatosensory and motor brain regions (Tab.
S4 & Fig. 2 & Fig. 3). Further, for the left DLPFC, analyses revealed consistent connectivity
patterns with MCC, subcortical brain regions (e.g., right Al, thalamus, striatum), and
frontoparietal brain regions (e.g., bilateral DLPFC, bilateral frontopolar cortex, bilateral IPL,

left superior parietal lobule, SPL, and right angular gyrus).
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For the brain regions identified in the single meta-analysis for TPP, the MACM
showed that the pTPJ was functionally coupled not only with dorsomedial prefrontal cortex
(DMPFC, superior medial gyrus, BA 10), posterior cingulate cortex and middle temporal
gyrus, but also with lateral brain areas of the prefrontal cortex (e.g., DLPFC). The VLPFC
showed, in addition, co-activation with the MCC, striatum, and SPL (Tab. S3 & Fig. S3). The
RSFC analyses revealed similar results with further connections to somatosensory and motor
brain regions such as the primary somatosensory cortex (i.e., postcentral gyrus, BA 1),

primary motor cortex (BA 4) and supplementary motor cortex (BA 6) (Tab. S4 & Fig. 4).

Consensus connectivity maps of MACM and RSFC profiles
Consensus functional connectivity maps of the SOP brain regions from the pooled analysis
were determined on the basis of the connectivity profiles emerged from MACM and RSFC
analyses. This analysis identified a consensus connectivity network, including clusters in the
LFPC (e.g., bilateral DLPFC and frontopolar cortex), the medial frontal regions (e.g., MCC),
the parietal cortex (e.g., right angular gyrus and left SPL), and subcortical regions (e.g., left
Al and a cluster in the thalamus extending to the striatum) (Tab. S5 & Fig. 5A).

Finally, the neural convergence of the consensus connectivity maps separately yielded
by the SPP and TPP single meta-analyses was determined with a conjunction analysis.
Convergence was observed in a set of brain regions clustered into three main sub-networks: a

central-executive network involving bilateral DLPFC, a mentalizing network involving the
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pTPJ, temporal cortex and temporal pole, and a salience network involving Al, MCC, and

striatum (Tab. S6 & Fig. 5B).

Hierarchical cluster analysis of SPP and TPP regions

Hierarchical clustering analyses based on the RSFC profile of the identified meta-analytic
brain regions were performed to provide insights into functionally coherent sub-networks or
“cliques” underlying punishment behaviors. First, SOP brain regions from the pooled analysis
clustered into three main sub-networks (Fig. 6A): a salience sub-network (i.e., left Al, MCC,
thalamus, caudate; ED = 8.13, SD = 0.96), a frontoparietal sub-network (i.e., right angular
gyrus, bilateral inferior frontal gyrus, left SPL; ED = 8.29, SD = 1.05) and a frontal sub-
network (i.e., left inferior frontal gyrus, bilateral DLPFC; ED = 9.98, SD = 2.08).

Second, the SPP clusters from the single analysis grouped into four main sub-networks
(Fig. 6B): a salience sub-network (i.e., bilateral Al, inferior frontal gyrus [pars orbitalis] ; ED
=6.79, SD = 1.42), a subcortical sub-network (i.e., putamen, thalamus, cerebellum; ED = 8.86,
SD = 0.91), a latero-medial prefrontal sub-network (i.e., bilateral MCC and middle frontal
gyrus; ED = 10.16, SD = 0.64), and a central-executive sub-network (i.e., bilateral SPL,
DLPFC; ED =9.51, SD = 1.76).

Third, the TPP clusters from the single analysis clustered into two sub-networks (Fig.
6C): a frontotemporal sub-network (i.e., inferior frontal gyrus, inferior temporal gyrus; ED =
10.96, SD = 1.03) and a frontoparietal sub-network (i.e., IPL, ACC; ED = 11.24, SD = 0).
Interestingly, no subcortical sub-networks were recruited by TPP, although previous MACM
and RSFC analyses revealed some TPP-related brain areas in subcortical areas such as the

thalamus and striatum.
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Finally, the clustering profile of the common neural patterns yielded by the
conjunction analysis of SPP and TPP revealed four sub-networks (Fig. 6D): a salience sub-
network (i.e., Al, putamen, and bilateral frontal orbital cortex; ED = 9.51, SD = 1.67), a
default-mode sub-network (i.e., bilateral pTPJ and temporal pole; ED = 10.57, SD = 1.43), a
lateral frontotemporal sub-network (i.e., bilateral DLPFC and inferior frontal gyrus; ED =
10.52, SD = 1.60) and a smaller mediofrontal sub-network (i.e., MCC and premotor cortex;

ED =7.26, SD = 0).

Functional characterization of punishment brain regions

Finally, the functional profile of the meta-analytic clusters was characterized using forward
inference analyses based on the meta-data included in the BrainMap database. The goal was
to determine differences and convergences of the functional roles undertaken by the identified
meta-analytic clusters. First, analyses of the brain region from the pooled SOP analysis
revealed that the left Al (Fig. 7A) was functionally associated with both cognitive and
affective domains involving language, pain and reward (Fig. 7D). The left DLPFC (Fig. 7B)
was associated only with processes of the cognitive domain such as reasoning, working
memory and explicit memory (Fig. 7D). Finally, the right Al (Fig. 7C) was particularly
associated with the interoceptive domain involving in particular pain processing (Fig. 7D).
Comparing the likelihood ratios of the two Al clusters, the left Al was more likely related to

cognition, whereas the right Al to affective processing.
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Second, analyses of the brain regions from the single meta-analysis for SPP
demonstrated that the left Al (Fig. 8A) was associated with processes of the cognitive and
affective domains such as language, reward and pain (Fig. 8C), while the right Al (Fig. 8B)
with processes of the interoceptive and affective domains such as pain, gustation, disgust, and
anxiety (Fig. 8C), although only pain survived correction for multiple comparisons.
Comparing the likelihood ratios of the two Al clusters, an opposite functional pattern was
observed for SPP than for the previous SOP analysis: the left Al was here more likely related
to both cognition and affective processing than the right Al.

Finally, analyses of the brain regions from the single meta-analysis for TPP showed
that the left pTPJ (Fig. 9A) was associated with affective and social cognitive domains (Fig.
9C), while the left VLPFC (Fig. 9B) only with processes of a cognitive domain such as
language and social cognition (Fig. 9C). Given these results, SPP and TPP do not specifically
engage different psychological domains. On the contrary, both are associated with similar

affective and cognitive processes, despite the different brain regions related to these processes.
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Discussion

SOP represents an important mechanism for social behavior control, enabling cooperation
within large-scale societies among genetically heterogeneous individuals (Fehr and
Fischbacher, 2004a, b). The HPM posits that SPP and TPP engage similar cognitive
processes for blameworthiness recognition but in different manners. Here, we investigated
whether TPP and SPP engage different brain mechanisms associated with putatively different
cognitive processes. As the basis for all subsequent analyses, we first identified the meta-
analytic brain regions consistently activated by SPP and TPP (ALE method). We next
determined the consensus connectivity networks of those SPP and TPP brain regions (using
task-based MACM and task-free RSFC) and their sub-network compositions (using
hierarchical analyses). Those steps allowed us to determine commonalities and differences of
the neural patterns associated with SPP and TPP. We finally characterized the functional roles
of these neural activations employing functional decoding analyses. Overall, we demonstrated
that similar affective and cognitive processes are associated with the two forms of SOP. Their
common neural patterns clustered into four functional networks: the salience, default-mode,
frontotemporal, and medial prefrontal networks. However, we also observed a certain degree
of neural and functional specificity for the two forms of SOP —bilateral Al for SPP, and

VLPFC and pTPJ for TPP— with partially diverging neural network configurations.

The psychological processes of brain regions underlying punishment

We first tested the HPM hypothesis that TPP and SPP involve similar cognitive processes but
while the SPP puts more weight on the harm of the transgression, TPP focuses on the
intentions of the transgressor (Krueger and Hoffman, 2016). Our results showed that across
forms of SOP, a set of common brain regions—the bilateral Al and the left DLPFC—were
consistently activated by punishment decisions. While the right Al was more likely related to

affective processing, the left Al and DLPFC were more strongly associated with the cognitive
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domain. These findings mirror the results of the SOP contribution analyses showing that more
TPP studies contributed to the cluster in the DLPFC associated with cognition than SPP
studies, whereas the reverse was true for the Al, especially for the cluster in the right Al
associated with affective processing.

Nonetheless, separate, single analyses for each form of SOP revealed a certain degree
of specificity in the SPP and TPP neural patterns. On the one hand, SPP consistently activated
the bilateral Al and was supported by salience (including the Al), subcortical (e.g., putamen
and thalamus) and lateromedial prefrontal (e.g., MCC and DLPFC) networks. On the contrary,
TPP consistently activated the left pTPJ and VLPFC and was supported by frontotemporal
and frontoparietal networks (including IPL and inferior temporal gyrus). Both clusters were
associated with affective and cognitive domains, although the SPP clusters loaded more on
emotion processing and the TPP clusters on cognition. Finally, SOP did not only engage the
cognitive and affective domains but also an interoceptive domain associated with negative
emotions that might help map the victim’s affective state for empathic concern. Thus, even
though both forms of SOP recruit a common cognitive-affective-motivational network
(Strobel et al., 2011), still differences remain. Such differences might be traced back to the
different role dynamics between victim and punisher in SPP and TPP.

In SPP, the harm of a norm violation might be more salient, as the punisher and the
victim are the same person. Indeed, norm-deviant behaviors are judged as more severe by
those who are penalized by them. For example, individuals are more averse to
disadvantageous than advantageous inequality (Bechtel et al., 2018; Fehr and Schmidt, 1999;
Gao et al., 2018; Loewenstein et al., 1989). This might suggest an egocentric bias in
evaluations of the severity of a norm violation, which might lead to a weighting imbalance
between the transgression’s severity and the transgressor’s responsibility, resulting in harsher
sanctions (Schiller et al., 2014; Sommers and Ellsworth, 2000). Future studies using, for

instance, computational modeling to estimate subject-specific weighting of a transgression
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might consider testing whether individuals weight a transgression’s severity more when they
are the target of the transgression, and whether this stronger weighting correlates with harsher
punishments.

On the contrary, third-party punishers (as long as they have no relationship with the
victim) are in the impartial position to carefully consider and equally weight the
transgression’s severity and the transgressor’s responsibility. Thus, they might show a
reduced bias in integration of harm evaluations and inferences on the transgressor’s intentions
for the determination of blameworthiness (Zhong et al., 2016).

Such differences were also reflected by the different networks the SPP and TPP were
observed to engage. In particular, SPP engaged networks of regions such as the Al, MCC,
DLPFC, SPL and subcortical areas involved in detection of a variety of norm violations, such
as unfairness, dishonesty, defection of cooperation and betrayal (Bellucci et al., 2019a; Feng
et al., 2015; Yang et al., 2019). On the contrary, TPP engaged networks of higher-order
regions such as the IPL, middle frontal gyrus and the temporal cortex involved in
transgression evaluations and responsibility attributions (Bellucci et al., 2017a; Berthoz et al.,
2002). These results corroborate the hypothesis that norm violation is judged more severely in
SPP than TPP, while both norm violation and assessment of responsibility are more equally

weighted in TPP as opposed to SPP.

The neural networks underlying punishment

Next, we tested the HPM prediction that SOP recruits a specific set of domain-general
networks. The salience network (e.g., Al) is supposed to detect the presence of a harmful act,
signaling a norm violation; the default-mode network (e.g., pTPJ) is required to assign
intentions and integrate harm signal to determine the blameworthiness of the wrong-doer; and,

finally, the central-executive network (e.g., DLPFC) is hypothesized to sustain the last steps
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of a punishment choice, namely, the infliction of the adequate sanction (Krueger and Hoffman,
2016).

We found only partial evidence to this hypothesis. SOP brain regions clustered indeed
into three networks. First, we observed the salience network encompassing the Al, MCC and
caudate (Dosenbach et al., 2007; Seeley et al., 2007). The MCC might monitor the contextual
situation and urge to take action, representing negative emotions associated with the
transgression (Hoffstaedter et al., 2014; Lieberman and Eisenberger, 2015). The caudate may
reflect a desire to seek revenge for the suffered norm violation (Singer et al., 2006) or
integrate behaviorally-relevant information for belief updating about the character of those
who show norm-deviant behaviors, as this region is activated during interactions with unfair
or immoral others (Harle et al., 2012; Servaas et al., 2015; Wardle et al., 2013).

The Al might be recruited to signal the unexpected norm violation implied by the
harmful act, as this region signals violations of expectations and prediction errors in the
aversive domain (Allen et al., 2016; Farrer and Frith, 2002; Koelsch et al., 2002). In particular,
activity in the Al is rather related to expectancies of negative events than to the encoding of
negative events as such (Lin et al., 2013). In the social domain, the Al might be recruited in
response to actual or hypothetical violations of social expectancies, such as norm violations
(Feng et al., 2015; Zinchenko and Arsalidou, 2018). For instance, activations in the Al are
elicited by (hypothetical) defections of trust violating a reciprocity norm (Bellucci et al.,
2017b; Delgado et al., 2005; van den Bos et al., 2009), and a norm violation more strongly
engages the Al when perpetrated by an in-group member for whom expectations of social
norm compliance are stronger (Wu et al., 2018).

Second, we found a frontoparietal network that largely overlaps with the domain-
general central executive network encompassing the SPL and DLPFC. Both SPL and DPLFC
are associative brain regions that allow the integration of cognitive and affective evaluations

for the formation of abstract, conceptual knowledge that might sustain evaluation processes
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related to the determination of the proper sanction (Carter and Huettel, 2013; Culham and
Valyear, 2006; Wood and Grafman, 2003). In particular, the DLPFC has been suggested to
encode social utility signals that reflect social preferences informative of an individual’s
propensity to engage in prosocial behaviors or to enforce social norm compliance (Holper et
al., 2018; Ruff et al., 2013). This region is activated during norm-compliant behaviors
triggered by punishment threats (Spitzer et al., 2007) and might take a specific role in the
execution and selection of the appropriate punishment beyond evaluations of blameworthiness.
Indeed, stimulation-induced disruption of the DLPFC impairs norm-enforcing behaviors
leaving the recognition of the wrong-doing intact (Buckholtz et al., 2015; Knoch et al., 2006).

However, the HPM also posits that to determine the perpetrator’s blameworthiness,
weighting the severity of the norm violation is not sufficient for the choice of the proper
punishment. Inferences on the transgressor’s intentions need to be made, which are supposed
to be carried out by the default-mode network, especially the pTPJ. Indeed, a basic tenet in
criminal law poses that the act makes a person guilty only if the mind is also guilty (Shen et
al., 2011). Accordingly, momentary disruption of the pTPJ via transcranial magnetic
stimulation makes participants judge attempted harms as more permissible (Young et al.,
2010).

We found evidence for the involvement of the default-mode network only in the
conjunction analysis between the separate functional profiles of SPP and TPP. Given the
heavy engagement of mentalizing brain regions by TPP, the results of this conjunction
analysis might likely be driven by the importance of mentalizing regions in TPP. In fact, our
ALE analysis revealed that TPP strongly engaged the pTPJ—a central region for inferences
on the others’ intentions (Saxe and Kanwisher, 2003; Saxe and Powell, 2006)— and the
VLPFC —a pivotal region in regulatory processes for prosocial behaviors (Fouragnan et al.,
2013; Souza et al., 2009; Yang et al., 2019). In particular, in TPP, the pTPJ might weight the

intentions and beliefs of the transgressors during the wrongdoing, while the VLPFC might
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dampen the harm-driven urge of harsh punishments promoting fairer sanctions. On the

contrary, no mentalizing brain regions were found for SPP.

Limitations

This meta-analysis provided an overview of the psychological processes of brain regions and
neural networks involved in different types of SOP. However, there are some limitations to
our study that deserve discussion. First, variations in the intentionality of a norm violation
(e.g., accidental vs. attended harm) might help better understand how the transgression’s
severity and the transgressor’s responsibility are weighted for the determination of
blameworthiness. This might, for instance, clarify the role of the default-mode network in
SPP as well, as this neural network was preferentially engaged by TPP in the current work.
Furthermore, it might elucidate the role of the amygdala and medial PFC, which, contrary to
the HPM predictions, were not found in the current study. The HPM proposes that the
amygdala signals the severity of the inflicted harm, whereas the medial PFC evaluates the
transgressor’s blameworthiness integrating information about the transgression’s severity and
the transgressor’s responsibility. One reason for this null finding might lie in the fact that
fMRI studies have not so far disentangled evaluations of the transgression’s harm from
evaluations of the transgressor’s blameworthiness.

Second, it is still an open question whether different psychological processes and
neural patterns are evoked by hypothetical and actual punishment decisions. In particular,
punishment decisions have been studied using either vignettes where participants are asked to
make hypothetical punishment decisions or economic games where participants make actual,
costly punishment decisions. Due to the paucity of studies, we were not able to address this
open question, but we here notice that there are already conflicting results in the literature that
might be due to these two different paradigms. For instance, in one study, impairment of

punishment for wrongful acts could be experimentally achieved only via disruption of the
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right DLPFC (Knoch et al., 2006), whereas in a more recent study, no lateralization effects
were found after bilateral DLPFC disruption, despite successful punishment reduction
(Buckholtz et al., 2015). The use of different paradigms might well explain these different
findings, since the former study used an economic game while the latter asked participants to
make hypothetical decisions. Thus, participants in the economic game might have faced a
more conflicting situation that required reliance on the right DLPFC, which is central to
control adjustments in high conflict situations (Mansouri et al., 2009). Future studies are still
needed to better understand how these different paradigms and their associated psychological
components and neural signatures interact with each other to bring about a punishment
decision.

Despite these limitations, we identified a consensus connectivity network that entails
candidate brain regions for the representations of the core functional mechanisms underlying
SOP. This network might be used in future studies to test how it instantiates the processes that
bring about a punishment decision. For instance, neural activity within this network might be
computed for predictions of individual decisions to punish wrongdoing. Predictive models
based on this network might yield better performance than models based on whole-brain
activity (Bellucci et al., 2019b) or domain-general networks that are likely unrelated to the
punishment phenomenon. Finally, the identification of this network might provide insights
into investigations of individual differences in norm violations and clinical traits such as

psychopathology and social phobia (Blair et al., 2010; Veit et al., 2010).

Conclusions

Taken together, our results demonstrated that different forms of SOP engage complementary
neural networks with converging functional roles. These neural networks converged on
common connectivity patterns revealing an extended, consensus connectivity network.

However, given the complex and fine-grained network organization yielded by the separate
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analyses for each form of SOP, the HPM in its preliminary formulation might be too coarse
and requires revision. Thus, future work is still needed to experimentally clarify the functional
role and interactions of these brain regions and networks. By highlighting the specific neural
and functional cliques that underlie SOP, our work will help future investigations in shaping

research hypotheses to shed light on one of the most peculiar human behaviors.
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Figure Legends
Figure 1. Meta-analytic results. Results of meta-analytic ALE analyses for SOP (A), SPP (B)
and TPP (C). The depicted brain regions are consistently activated clusters across published
fMRI studies that survived correction for multiple comparisons controlling for cluster-level
familywise error (cCFWE < .05). Finally, overlaps of the three meta-analytic maps (D) are

shown to compare the anatomical extent of the observed clusters.

L, left; R, right; ALE, activation likelihood estimation; fMRI, functional magnetic resonance
imaging; N, conjunction; DLPFC, dorsolateral prefrontal cortex; Al, anterior insula; VLPFC,
ventrolateral prefrontal cortex; SOP, social punishment; SPP, second-party punishment; TPP,

third-party punishment.

Figure 2. Task-free, resting-state functional connectivity (RSFC) for SOP. Regions
significantly connected to the three clusters consistently activated for SOP, namely, the left Al

(red), left DLPFC (green) and right Al (blue) based on RSFC analyses.

L, left; R, right; N, conjunction; SOP, social punishment; Al, anterior insula; DLPFC,

dorsolateral prefrontal cortex; cluster-level familywise error (CFWE) < .05.

Figure 3. Task-free, resting-state functional connectivity (RSFC) for SPP. Regions
significantly connected to the three clusters consistently activated for SPP, namely, the left Al

(red) and right Al (green) based on RSFC analyses.

L, left; R, right; N, conjunction; SPP, second-party punishment; Al, anterior insula; cluster-

level familywise error (cCFWE) < .05.
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Figure 4. Task-free, resting-state functional connectivity (RSFC) for TPP. Regions
significantly connected to the three clusters consistently activated for TPP, namely, the left

pTPJ (red) and left VLPFC (green) based on RSFC analyses.

L, left; N, conjunction; TPP, third-party punishment; pTPJ, posterior temporoparietal junction;

VLPFC, ventrolateral prefrontal cortex; cluster-level familywise error (CFWE) < .05.

Figure 5. Consensus connectivity network. Results of consensus connectivity map for SOP

(A) and overlaps of consensus connectivity maps for SPP and TPP (B).

SOP, social punishment; TPP, third-party punishment; SPP, second-party punishment; L, left;
R, right; SPL, superior parietal lobule; DLPFC, dorsolateral prefrontal cortex; FPC,
frontoparietal cortex; Al, anterior insula; MCC, middle cingulate cortex; AG, angular gyrus;

Put, putamen; STG, superior temporal gyrus.

Figure 6. Hierarchical clustering analyses. Results from the clustering analyses based on
the RSFC profiles of the meta-analytic clusters for SOP (A), SPP (B), TPP (C) and for the

overlapping regions of the SPP and TPP results (D).

L, left; R, right; AG, angular gyrus; Thal, thalamus; Caud, caudate; Cbl, cerebellum; IPL,
inferior parietal lobule; SPL, superior parietal lobule; IFG, inferior frontal gyrus; OrbC,
orbital cortex; MTG, middle temporal gyrus; MCC, middle cingulate cortex; PreMC,
premotor cortex; Put, putamen; STG, superior temporal gyrus; TP, temporal pole; MFG,

middle frontal gyrus; PreG, precentral gyrus; ITG, inferior temporal gyrus.

Figure 7. Functional decoding analyses for SOP. Functional profiles of the left Al (A), left

DLPFC (B) and right Al (C) and their functional decoding (D) based on meta-categories in
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the BrainMap database. Around the spider plot are the behavioral domains yielded by forward
inference, i.e., categories of mental operations likely to be isolated by the experiments in the
BrainMap database. In parentheses are the subcategories that specify the behavioral domains.

Depicted values are likelihood ratios.

L, left; R, right; SOP, social punishment; Al, anterior insula; DLPFC, dorsolateral prefrontal

cortex; *FDR < .05.

Figure 8. Functional decoding analyses for SPP. Functional profiles of the left Al (A) and
right Al (B) and their functional decoding (C) based on meta-categories in the BrainMap
database. Around the spider plot are the behavioral domains yielded by forward inference, i.e.,
categories of mental operations likely to be isolated by the experiments in the BrainMap
database. In parentheses are the subcategories that specify the behavioral domains. Depicted

values are likelihood ratios.

L, left; R, right; SPP, second-party punishment; Al, anterior insula; *FDR < .05.

Figure 9. Functional decoding analyses for TPP. Functional profiles of the left Al (A) and
right Al (B) and their functional decoding (C) based on meta-categories in the BrainMap
database. Around the spider plot are the behavioral domains yielded by forward inference, i.e.,
categories of mental operations likely to be isolated by the experiments in the BrainMap
database. In parentheses are the subcategories that specify the behavioral domains. Depicted

values are likelihood ratios.

L, left; TPP, third-party punishment; pTPJ, posterior temporoparietal junction; VLPFC,

ventrolateral prefrontal cortex; *FDR < .05.
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Table Legends

Table 1. ALE meta-analysis results for punishment. ALE main-effect results for social
punishment, second-party punishment and third-party punishment (cFWE < .05). The right
anterior insula cluster was also more significantly activated for second-party punishment than
third-party punishment in contrast analyses. DLPFC, dorsolateral prefrontal cortex; VLPFC,
ventrolateral prefrontal cortex; IFG, inferior frontal gyrus; pTPJ, posterior temporoparietal
junction; MTG, middle temporal gyrus; BA, Brodmann area; anatomical assignment based on
the Anatomy toolbox in parentheses; L, left; ALE, activation likelihood estimation; MNI,

Montreal Neurological Institute.
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