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Abstract 29 

Social punishment (SOP)—third-party punishment (TPP) and second-party punishment 30 

(SPP)—sanctions norm-deviant behavior. The hierarchical punishment model (HPM) 31 

posits that TPP is an extension of SPP and both recruit common processes engaging large-32 

scale domain-general brain networks. Here, we provided meta-analytic evidence to the HPM 33 

by combining the activation likelihood estimation approach with connectivity analyses 34 

and hierarchical clustering analyses. Although both forms of SOP engaged the dorsolateral 35 

prefrontal cortex and bilateral anterior insula (AI), a functional differentiation also emerged 36 

with TPP preferentially engaging social cognitive regions (temporoparietal junction) and SPP 37 

affective regions (AI). Further, although both TPP and SPP recruit domain-general networks 38 

(salience, default-mode, and central-executive networks), some specificity in network 39 

organization was observed. By revealing differences and commonalities of the neural 40 

networks consistently activated by different types of SOP, our findings contribute to a better 41 

understanding of the neuropsychological mechanisms of social punishment behavior––one of 42 

the most peculiar human behaviors. 43 

  44 
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Introduction 45 

In a highly complex social world, norms are necessary to govern and organize the 46 

multifaceted dynamics of interpersonal interactions (Bicchieri, 2014). However, 47 

establishing a set of norms is not sufficient to guarantee everybody’s compliance (Fehr 48 

and Fischbacher, 2004a, b). As opposed to self-punishment, social punishment (SOP) 49 

sanctions deviant behavior that violates the group’s social norms. Individuals punish 50 

transgressors to enforce these social norms even when punishment is costly (Dawes et al., 51 

2007; Seymour et al., 2007). SOP takes two essential forms: second-party punishment 52 

(SPP) and third-party punishment (TPP) (Fehr and Fischbacher, 2003; Fehr and Gächter, 53 

2002). Both require that the norm-enforcer recognizes the intention of the offender and the 54 

harm inflicted onto the victim. These evaluations are then integrated into estimations of 55 

the transgressor’s blameworthiness to assign the appropriate punishment (Buckholtz and 56 

Marois, 2012). However, TPP and SPP differ in the target of the wrongdoing. In SPP, 57 

victim and punisher are the same person, while in TPP the victim is another person than 58 

the impartial, third-party judge. Previous work has suggested this difference is reflected in 59 

the different neuropsychological processes engaged by SPP and TPP. 60 

Psychophysiological evidence suggests the emotional reaction of the 61 

victim/punisher to the inflicted harm is an essential component of SPP. For instance, 62 

punishing others for their unfairness increases skin conductance response (SCR, a 63 

measure of emotional activation), and higher emotional states are reported during 64 

punishment of unfair behaviors (van 't Wout et al., 2006). Interestingly, SCR increases 65 

only when the punisher is also the target of the unfair act but not when the unfair act 66 

affects someone else (Civai et al., 2010). These results concur with neuroimaging research 67 

pointing to neural activations during punishment of unfairness in the anterior insula (AI) 68 

(Sanfey et al., 2003)—a brain region associated with aversive experiences (Craig, 2002; 69 

Damasio et al., 2000). Crucially, activity in the AI is linearly related to punishment of 70 
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unfair behaviors, suggesting that this region plays an essential role in SPP (Tabibnia et al., 71 

2008). 72 

On the contrary, the intentions of a wrongdoer are central to TPP to determine the 73 

transgressor’s responsibility for the appropriate punishment. Thus, impartial third-party 74 

judges punish intentional unfair behaviors more than unintentional unfair behaviors 75 

(Blount, 1995; Falk et al., 2008) and rely on mentalizing regions during their punishment 76 

decisions, such as the posterior temporoparietal junction (pTPJ)––a region involved in 77 

inferences on others’ intentions (Igelstrom and Graziano, 2017; Igelström et al., 2015; 78 

Saxe and Kanwisher, 2003; Saxe and Powell, 2006). For instance, the pTPJ plays an 79 

important role in third-party decisions to punish in- and outgroup members (Baumgartner 80 

et al., 2012; Baumgartner et al., 2014). Furthermore, impartial third-party judges recruit 81 

the lateral prefrontal cortex (LPFC) when they assess responsibility in norm violations 82 

(Zhong et al., 2016) or need to distinguish between contextual situations on the basis of 83 

criminal responsibility (Buckholtz et al., 2008). This evidence suggests that the LPFC is 84 

involved in the decision on the punishment that best aligns with the transgressor’s 85 

blameworthiness. 86 

However, this evidence is at odds with other findings. For instance, second-party 87 

punishers also evaluate the transgressor’s responsibility before a punishment decision and 88 

third-party punishers respond emotionally to a transgression as well (Civai, 2013; de 89 

Quervain et al., 2004; Egas and Riedl, 2008; Fehr and Gächter, 2002). Moreover, AI 90 

activations have been observed for norm violations in both SPP and TPP irrespective of 91 

the target of the violation (Civai et al., 2012; Corradi-Dell'Acqua et al., 2013) and even 92 

for one’s own wrongdoing (Güroğlu et al., 2010). These findings indicate that the AI 93 

rather signals the violation of a norm ––a computation required for the determination of 94 

the proper penalty in both SPP and TPP. Similarly, the LPFC has been linked to 95 

enforcement of social norm compliance in SPP (Ruff et al., 2013) and disruption of the 96 
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dorsal LPFC of second-party punishers reduces punishment of unfairness (Knoch et al., 97 

2006). This evidence indicates that the LPFC takes a role in the implementation of norm-98 

enforcing behaviors ––a process required in both forms of SOP. 99 

An alternative view on the processes underlying punishment behaviors has been 100 

put forward by the hierarchical punishment model (HPM) (Krueger and Hoffman, 2016). 101 

The HPM posits that SPP draws on a rudimental form of first-party punishment (i.e., 102 

conscience and guilt), while TPP emerges as an extension of SPP, allowing for a 103 

generalized norm-enforcing behavior in genetically heterogeneous societies. Accordingly, 104 

TPP is supposed to piggyback on a set of processes already engaged by SPP, and SPP 105 

relies on core processes already engaged by first-party punishment. Previous studies have 106 

provided preliminary evidence on neural commonalities underlying different forms of 107 

social punishment (Stallen et al., 2018; Zinchenko, 2019). The difference between TPP 108 

and SPP does not rely in their different cognitive processes but in how these processes are 109 

engaged. SPP places more weight on the harm of a norm violation engaging affective 110 

processes to signal its aversive and threatening nature. On the contrary, TPP relies more 111 

on the intentions behind a norm violation requiring perspective-taking abilities to mentally 112 

represent internal states and external circumstances of a self-unrelated situation. This 113 

hypothesis is consistent with phylogenetic and ontogenetic evidence that TPP is rare or 114 

non-existent in non-human primates and small-scale societies (Guala, 2012; Riedl et al., 115 

2012) and emerges in humans after age six when mentalizing abilities are fully developed 116 

(Frith and Frith, 2003; McAuliffe et al., 2015; Mendes et al., 2018). 117 

On the neural level, the HPM proposes three domain-general large-scale networks 118 

as underlying SOP. The salience network (involving the AI and anterior cingulate cortex, 119 

ACC) signals the norm violation and weights the severity of the inflicted harm. The 120 

default-mode network (including the medial PFC and pTPJ) evaluates the perpetrator’s 121 

intentions and integrates harm and intent for assessment of blameworthiness. Finally, the 122 
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central-executive network (anchored in the LPFC) converts blameworthiness evaluations 123 

into a punishment decision. 124 

In this study, we investigated whether TPP and SPP engage different brain 125 

mechanisms associated with putatively different cognitive processes. First, we identified the 126 

meta-analytic brain regions consistently activated by SPP and TPP, implementing the 127 

activation likelihood estimation (ALE) method (Eickhoff et al., 2009). Second, we determined 128 

the consensus connectivity networks of the emerging meta-analytic brain regions underlying 129 

SPP and TPP and their sub-network compositions, employing connectivity analyses (i.e., 130 

task-based meta-analytic connectivity mapping, MACM, and task-free resting-state functional 131 

connectivity, RSFC) and hierarchical analysis (Eickhoff et al., 2018; Goodkind et al., 2015; 132 

Hardwick et al., 2015; Kolling et al., 2016; Wang et al., 2015). These analyses allowed us to 133 

first delineate the connectivity profiles of TPP and SPP brain regions, their overlap and 134 

specificity, and then their functional roles with the help of functional decoding analyses 135 

(Genon et al., 2018). 136 

  137 
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Materials and Methods 138 

Literature search and selection  139 

A systematic online database search was performed on PubMed and Google Scholar by 140 

entering various combinations of relevant search items referring to punishment behaviors (up 141 

to the December 2, 2018). The following keywords were used for the search: ‘altruistic 142 

punishment’, ‘third-party punishment’, ‘second-party punishment’, ‘punishment’, ‘modified 143 

Ultimatum Game’ and ‘modified Dictator Game’, in combination with ‘fMRI’, ‘magnetic 144 

resonance imaging’, and ‘neuroimaging’, ‘PET’, ‘positron emission tomography’. Note that 145 

economic games and vignettes were included for the TPP studies. In economic game studies, 146 

participants in general face an unfair monetary distribution executed by another player (the 147 

transgressor) that they can punish by spending some of their endowment to diminish the 148 

transgressor’s payoffs (i.e., costly punishment). On the contrary, vignettes studies present in 149 

general participants with descriptions of various legal/moral transgressions and participants 150 

must decide how much to punish the transgressor (i.e., hypothetical punishment). To be able 151 

to capture neural activity specifically related to the different forms of punishment, this meta-152 

analysis included only contrasts during the decision phase that singled out the neural 153 

underpinnings of a third-party/second-party decisions (e.g., punishment vs. no 154 

punishment/baseline condition, TPP vs. SPP or SPP vs. TPP, reject vs. accept in economic 155 

games) as opposed to other types of decisions as well as correlations of neural signal with the 156 

amount of punishment/rejection rates (see Supplemental Material. List of Studies). 157 

In addition, several other sources were explored, including (a) the BrainMap database 158 

(http://brainmap.org), (b) work cited in review papers, and (c) direct searches on the names of 159 

frequently occurring authors. The searched studies were further assessed according to the 160 

following criteria: (i) participants were free from psychiatric or neurological diagnoses; (ii) 161 

participants were adults; (iii) no pharmacological modulations were reported; (iv) fMRI was 162 



 

8 
 

used as the imaging modality (no PET studies were found under the searched terms); (v) 163 

whole-brain analyses were applied (excluding region of interest [ROI] analyses) to reduce the 164 

inclusion of false positives; (vi) fMRI results were derived from a general linear model based 165 

on either a binary contrast or parametric analyses; and (vii) activations were presented in a 166 

standardized stereotaxic space (Talairach or Montreal Neurological Institute, MNI). Note that 167 

for studies reporting Talairach coordinates, a conversion to the MNI coordinates was 168 

implemented in the GingerALE software (https://www.brainmap.org/ale/) with the Brett’s 169 

algorithm.  170 

 171 

Activation likelihood estimation (ALE) method 172 

The ALE meta-analysis follows previous work published by our group (Bellucci et al., 2017b; 173 

Bellucci et al., 2018). The ALE algorithm (using in-house MATLAB scripts) was employed 174 

to investigate the coordinate-based, consistent, meta-analytic activations across studies 175 

examining neural responses associated with SOP decisions (Eickhoff et al., 2012; Eickhoff et 176 

al., 2009; Eickhoff et al., 2016). ALE determines the convergence of foci reported from 177 

different functional (e.g., blood-oxygen-level dependent [BOLD] contrast imaging) 178 

neuroimaging studies with published foci in Talairach or MNI space (Laird et al., 2005; 179 

Turkeltaub et al., 2002). Reported foci are interpreted as spatial probability distributions in the 180 

ALE framework. Their widths refer to the empirical estimates of the spatial uncertainty based 181 

on between-subjects and between-templates variability of the neuroimaging data (Eickhoff et 182 

al., 2009). To weight the between-subject variability, the number of subjects analyzed in 183 

studies is considered by the ALE algorithm. The assumption is that more reliable 184 

approximation to the ‘true’ activation are given by larger sample sizes. Thus, these samples 185 

are modelled with smaller Gaussian distributions (Eickhoff et al., 2009). 186 

An ALE map across studies is obtained by calculating the union of the individual 187 

modulated activation maps created from the maximum probability associated with any one 188 
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focus (always the closest one) for each voxel (Turkeltaub et al., 2012). This ALE map is 189 

determined against a null-distribution of random spatial association between studies 190 

employing a non-linear histogram integration algorithm (Eickhoff et al., 2012; Turkeltaub et 191 

al., 2012). Results were thresholded for significance using a cluster-level family-wise error 192 

(FWE) correction at P < 0.05 with a cluster defining threshold of P < 0.001 and 10,000 193 

permutations (Eickhoff et al., 2012; Eklund et al., 2016). Moreover, to meet criteria of robust 194 

unbiased results, clusters were only considered significant if the most dominant experiment 195 

(MDE) contributed to the significant cluster on average less than 50% and the two MDEs 196 

(2MDEs) contributed on average less than 80% (Bellucci et al., 2017b; Bellucci et al., 2018; 197 

Eickhoff et al., 2016). For experiments’ contributions, the fraction of the ALE value 198 

accounted for by each experiment contributing to the cluster was computed. This average 199 

non-linear contribution of each experiment to the ALE value was computed from the ratio of 200 

the ALE values at the location of the cluster with and without the experiment in question 201 

(Eickhoff et al., 2016). 202 

A total of 47 experiments (see Supplemental Material. List of Studies) examining SOP 203 

with a total of 312 foci across 1,188 subjects were identified, including a total of 22 204 

experiments for SPP (139 foci, 598 subjects, average of 27.2 subjects per experiment) and a 205 

total of 25 experiments for TPP (173 foci, 590 subjects, average of 23.6 subjects per 206 

experiment). Among these, eight experiments were from articles investigating both SPP and 207 

TPP in the same sample. Three main effect analyses for SOP (the pooled analysis of SPP and 208 

TPP), SPP and TPP, and two contrast analyses for SPP > TPP and TPP > SPP were performed. 209 

 210 

Task-based, meta-analytical connectivity modeling (MACM) analysis 211 

To investigate the meta-analytic co-activation profiles of punishment decisions, MACM 212 

analyses were conducted using the peak coordinates of each significant brain region identified 213 
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from the three previous ALE analyses for SOP, SPP and TPP as seed regions (i.e., sphere 214 

radius = 5 mm as in previous studies) (Camilleri et al., 2018; Langner et al., 2014). 215 

The BrainMap database (http://www.brainmap.org/) was used (Laird et al., 2009a), 216 

which at the time of assessment contained coordinates of reported activation foci and 217 

associated meta-data of approximately 14,720 neuroimaging experiments pertaining to 218 

“normal mapping” analyses. For SOP, the MACM analyses were based on the following 219 

experiments, foci, and number of subjects for each of the following seed regions: left AI (618 220 

experiments | 9,282 foci | 9,318 subjects), right AI (547 | 8,053 | 8,220 ), and left dorsolateral 221 

PFC (DLPFC; 116 | 1,655 | 1,818). The MACM analyses for SPP were based on the left AI 222 

(557 | 8,422 | 8,465) and the right AI (510 | 7,715 | 7,731) as seed regions, whereas for TPP on 223 

the left pTPJ (98 | 1,400 | 1,506) and the left ventrolateral PFC (VLPFC; 182 | 2,310 | 2,747) 224 

as seed regions. 225 

In brief, whole-brain peak coordinates of all those studies from BrainMap that 226 

reported at least one focus of activation within the respective ROIs were downloaded. Next, 227 

coordinates were analyzed with the ALE algorithm to detect areas of convergence of co-228 

activations with those seeds. Finally, the ALE maps were thresholded at P < 0.05 cluster-level 229 

corrected (cluster-forming threshold: P < 0.001 at voxel-level) and converted into z-scores for 230 

display (Bellucci et al., 2018; Camilleri et al., 2018). 231 

 232 

Task-free, resting-state functional connectivity (RSFC) analysis 233 

To investigate the FC profiles of punishment decisions, RSFC analyses were conducted using 234 

the peak coordinates of each significant brain region identified from the three previous ALE 235 

analyses for SOP, SPP and TPP as seed regions (i.e., sphere radius = 5 mm as in previous 236 

studies). RS-fMRI images of 192 healthy volunteers were obtained from the Enhanced Nathan 237 

Kline Institute – Rockland Sample (Nooner et al., 2012). Images were acquired on a Siemens 238 

TimTrio 3T scanner using BOLD contrast [gradient-echo EPI pulse sequence, TR = 1.4 s, TE 239 
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= 30 ms, flip angle = 65, voxel size = 2.0 mm × 2.0 mm × 2.0 mm, 64 slices]. Physiological 240 

and movement artifacts were removed from the resting-state data by using FIX (FMRIB's 241 

ICA-based Xnoiseifier, version 1.061 as implemented in FSL 5.0.9) (Griffanti et al., 2014; 242 

Salimi-Khorshidi et al., 2014) and data were further preprocessed using SPM8 (Wellcome 243 

Trust Centre for Neuroimaging, London) and in-house MATLAB scripts, following 244 

previously employed processing procedures (Camilleri et al., 2018; Satterthwaite et al., 2013). 245 

The processed time-course of each seed (sphere radius = 5 mm) was then correlated 246 

with the (identically processed) time-series of all other gray-matter voxels in the brain using 247 

linear (i.e., Pearson) correlation. The resulting correlation coefficients were transformed into 248 

Fisher's z-scores, which were entered in a second-level ANOVA for group analysis including 249 

age and gender as covariates of no interest. The data was then subjected to non-parametric 250 

permutation based inference and thresholded at P < 0.05 corrected for multiple comparisons 251 

on the cluster level. 252 

 253 

Consensus connectivity map 254 

After having identified brain areas showing task-based co-activation (i.e., MACM) and task-255 

free FC (i.e., RSFC) FC our seed regions, conjunction analyses were performed across the 256 

MACM and RSFC maps for each seed using the minimum statistic (Nichols et al., 2005). This 257 

resulted in three consensus connectivity maps (i.e., SOP, SPP, TPP) that yielded brain regions 258 

consistently interacting with each seed across different brain states (Clos et al., 2014; 259 

Hardwick et al., 2015). An extent-threshold of 10 continuous voxels was applied to exclude 260 

smaller regions of putatively spurious overlaps. The decision to use this exact number of 261 

voxels was indeed arbitrary but reflects standard procedures used in previous work (Camilleri 262 

et al., 2018). 263 

 264 

Hierarchical cluster analysis of SPP and TPP regions 265 
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To identify potential cliques among the networks of each brain region for SPP and TPP, 266 

hierarchical cluster analyses were performed using their RSFC patterns (Camilleri et al., 267 

2018). Using the FSLNets toolbox (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets), RSFC 268 

between all regions of the identified SPP and TPP networks was computed. Partial temporal 269 

correlations between all regions' time series data were computed to estimate pairwise 270 

functional connectivity (Marrelec et al., 2006). For each pairwise connection, Fisher's z–271 

transformed functional connectivity values were submitted to one-sample t-tests. The 272 

resulting t values, reflecting connection strength as well as consistency across the sample, 273 

were z-transformed (into units of the standard normal distribution). This connectivity matrix 274 

was then fed into the WARD clustering. 275 

Of note, all features entered the analyses without any thresholding for significance, 276 

which is a distinction from the analyses described above but necessary to preserve the full 277 

pattern of the respective connectional and functional profiles. The concept behind hierarchical 278 

clustering is to group the initial elements (regions) in a stepwise fashion such that elements 279 

within a cluster have features that are as homogeneous as possible while different clusters are 280 

maximally distinct from each other. This was achieved through an agglomerative approach in 281 

which clusters initially formed by individual regions that are subsequently merged according 282 

to their similarity using standardized Euclidean distances and Ward's incremental sum of 283 

squares method (Eickhoff et al., 2011; Timm, 2002). This hierarchical approach then revealed 284 

cliques of SPP and TPP regions at different levels of granularity. Average Euclidean distances 285 

(EDs) and standard deviations (SDs) were provided for each hierarchical cluster. 286 

 287 

Functional characterization of punishment brain regions 288 

The functional profiles of the observed meta-analytic brain regions were characterized based 289 

on the behavioral domain (BD), which describes the categories (i.e., action, cognition, 290 

emotion, interception, and perception) and subcategories (e.g., reward, language, social 291 
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cognition, pain, among others) of the mental operations likely isolated by the experiments in 292 

the BrainMap database (Fox and Lancaster, 2002; Fox et al., 2014; Laird et al., 2009b). This 293 

functional characterization was based on forward inference with the aim to identify all 294 

experiments that engage a particular region of interest, and then analyze the experimental 295 

meta-data describing the experimental settings employed in these experiments (Müller et al., 296 

2013; Rottschy et al., 2012). This allows statistical inference on the type of tasks that evoke 297 

activations in a brain region. 298 

In this forward inference approach, the functional profile was determined by 299 

identifying BD for which the probability of finding activation in the respective region/set of 300 

regions was significantly higher than the overall (a priori) chance across the entire database. 301 

That is, it was tested whether the conditional probability of activation given a particular BD, 302 

i.e., P(Activation|Domain), was higher than the baseline probability of activating the region(s) 303 

in question per se, i.e., P(Activation). Significance was established using a binomial test using 304 

the standard 𝛼𝛼 = 0.05, corrected for multiple comparisons using false discovery rate (FDR). 305 

  306 
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Results 307 

ALE analysis 308 

A total of 47 experiments were identified, 22 for SPP and 25 for TPP. We first investigated 309 

the consistent neural patterns activated for SOP (i.e., pooled analysis across SPP and TPP). 310 

The analysis revealed three regions: left AI (17 contributing experiments; i.e., 36.2% of the 311 

total experiments, MDE=10.34%, 2MDEs=20.17%), right AI (13 contributing experiments; 312 

i.e., 27.7% of the total experiments, MDE=14.87%, 2MDEs=28.48%), and left DLPFC (6 313 

contributing experiments; i.e., 12.8% of the total experiments, MDE=32.36%, 314 

2MDEs=54.21%) (Tab. 1 & Fig. 1A). Examining the experiments contributing to the 315 

activation in the left and right AI as well as left DLPFC, 8 out of 18 (44.4%), 5 out of 13 316 

(38.5%), and 4 out of 6 (66.7%) experiments investigated TPP, respectively (Tab. S1). These 317 

results indicated a certain degree of meta-analytic convergence of both SPP and TPP studies 318 

on common brain regions in the insular and lateral prefrontal cortices. Next, separate meta-319 

analytic analyses were run to identify the specific meta-analytic clusters for SPP and TPP. 320 

............................................................................................................................................. 321 

Insert Figure 1 & Table 1 about here 322 

............................................................................................................................................. 323 

The single meta-analysis for SPP revealed consistent activations in bilateral AI (left: 324 

10 experiments, i.e., 45.5% of total experiments, MDE=16.38%, 2MDEs=32.49%; right: 8 325 

experiment, i.e., 36.4% of total experiments, MDE=19.06%, 2MDEs=37.29%) (Tab. 1 & 326 

Tab. S2 & Fig. 1B), while the single meta-analysis for TPP showed consistent activations in 327 

the left VLPFC (5 experiments, i.e., 20.0% of total experiments, MDE=31.65%, 328 

2MDEs=60.25%) and pTPJ (5 experiments, i.e., 20.0% of total experiments, MDE=32.36%, 329 

2MDEs=59.33%) (Tab. 1 & Tab. S2 & Fig. 1C). Follow-up contrast analyses revealed that 330 

the right AI was more strongly activated by SPP than TPP. These single meta-analyses mirror 331 
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the results of the previous pooled meta-analysis. In fact, in the latter the bilateral AI revealed 332 

a higher proportion of contributions from SPP studies, while the left LPFC from TPP studies. 333 

Moreover, a conjunction analysis revealed that the SOP clusters in bilateral AI largely overlap 334 

with the insular clusters observed in the SPP analysis (Fig. 1D). Hence, both analyses support 335 

the hypothesis that punishment decisions rely on common brain regions differently engaged 336 

by SPP and TPP. 337 

 338 

MACM (task-based co-activation) and RSFC (task-free functional connectivity) analysis 339 

To characterize the functional profile of the observed meta-analytic patterns, we first analyzed 340 

their functional connectivity fingerprinting. To this end, we analyzed the connectivity profiles 341 

both at rest and across different tasks, as the good match between resting-state connectivity 342 

patterns and activation patterns across tasks seems to reveal the underlying functional 343 

hierarchy of specific brain regions, which is highly informative of their functional role (Cole 344 

et al., 2014; Raichle, 2015; Smith et al., 2009; Tavor et al., 2016). The task-based co-345 

activation (i.e., MACM) analyses revealed similar neural patterns for the bilateral AI 346 

(identified as seed regions in both the pooled analysis for SOP and the single meta-analysis 347 

for SPP), including lateral frontoparietal brain regions (e.g., DLPFC, inferior parietal lobule, 348 

IPL, pTPJ [peak in the supramarginal gyrus], medial prefrontal regions (e.g., middle cingulate 349 

cortex , MCC, temporal areas), subcortical brain regions (e.g., striatum) (Tab. S3 & Fig. S1 350 

& Fig. S2). 351 

The task-free functional connectivity (i.e., RSFC) analyses demonstrated similar 352 

findings with additional connectivity pattern in somatosensory and motor brain regions (Tab. 353 

S4 & Fig. 2 & Fig. 3). Further, for the left DLPFC, analyses revealed consistent connectivity 354 

patterns with MCC, subcortical brain regions (e.g., right AI, thalamus, striatum), and 355 

frontoparietal brain regions (e.g., bilateral DLPFC, bilateral frontopolar cortex, bilateral IPL, 356 

left superior parietal lobule, SPL, and right angular gyrus). 357 
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............................................................................................................................................. 358 

Insert Figure 2 & Figure 3 about here 359 

............................................................................................................................................. 360 

For the brain regions identified in the single meta-analysis for TPP, the MACM 361 

showed that the pTPJ was functionally coupled not only with dorsomedial prefrontal cortex 362 

(DMPFC, superior medial gyrus, BA 10), posterior cingulate cortex and middle temporal 363 

gyrus, but also with lateral brain areas of the prefrontal cortex (e.g., DLPFC). The VLPFC 364 

showed, in addition, co-activation with the MCC, striatum, and SPL (Tab. S3 & Fig. S3). The 365 

RSFC analyses revealed similar results with further connections to somatosensory and motor 366 

brain regions such as the primary somatosensory cortex (i.e., postcentral gyrus, BA 1), 367 

primary motor cortex (BA 4) and supplementary motor cortex (BA 6) (Tab. S4 & Fig. 4). 368 

............................................................................................................................................. 369 

Insert Figure 4 about here 370 

............................................................................................................................................. 371 

 372 

Consensus connectivity maps of MACM and RSFC profiles 373 

Consensus functional connectivity maps of the SOP brain regions from the pooled analysis 374 

were determined on the basis of the connectivity profiles emerged from MACM and RSFC 375 

analyses. This analysis identified a consensus connectivity network, including clusters in the 376 

LFPC (e.g., bilateral DLPFC and frontopolar cortex), the medial frontal regions (e.g., MCC), 377 

the parietal cortex (e.g., right angular gyrus and left SPL), and subcortical regions (e.g., left 378 

AI and a cluster in the thalamus extending to the striatum) (Tab. S5 & Fig. 5A). 379 

Finally, the neural convergence of the consensus connectivity maps separately yielded 380 

by the SPP and TPP single meta-analyses was determined with a conjunction analysis. 381 

Convergence was observed in a set of brain regions clustered into three main sub-networks: a 382 

central-executive network involving bilateral DLPFC, a mentalizing network involving the 383 
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pTPJ, temporal cortex and temporal pole, and a salience network involving AI, MCC, and 384 

striatum (Tab. S6 & Fig. 5B). 385 

............................................................................................................................................. 386 

Insert Figure 5 about here 387 

............................................................................................................................................. 388 

 389 

Hierarchical cluster analysis of SPP and TPP regions 390 

Hierarchical clustering analyses based on the RSFC profile of the identified meta-analytic 391 

brain regions were performed to provide insights into functionally coherent sub-networks or 392 

“cliques” underlying punishment behaviors. First, SOP brain regions from the pooled analysis 393 

clustered into three main sub-networks (Fig. 6A): a salience sub-network (i.e., left AI, MCC, 394 

thalamus, caudate; ED = 8.13, SD = 0.96), a frontoparietal sub-network (i.e., right angular 395 

gyrus, bilateral inferior frontal gyrus, left SPL; ED = 8.29, SD = 1.05) and a frontal sub-396 

network (i.e., left inferior frontal gyrus, bilateral DLPFC; ED = 9.98, SD = 2.08). 397 

Second, the SPP clusters from the single analysis grouped into four main sub-networks 398 

(Fig. 6B): a salience sub-network (i.e., bilateral AI, inferior frontal gyrus [pars orbitalis] ; ED 399 

= 6.79, SD = 1.42), a subcortical sub-network (i.e., putamen, thalamus, cerebellum; ED = 8.86, 400 

SD = 0.91), a latero-medial prefrontal sub-network (i.e., bilateral MCC and middle frontal 401 

gyrus; ED = 10.16, SD = 0.64), and a central-executive sub-network (i.e., bilateral SPL, 402 

DLPFC; ED = 9.51, SD = 1.76). 403 

Third, the TPP clusters from the single analysis clustered into two sub-networks (Fig. 404 

6C): a frontotemporal sub-network (i.e., inferior frontal gyrus, inferior temporal gyrus; ED = 405 

10.96, SD = 1.03) and a frontoparietal sub-network (i.e., IPL, ACC; ED = 11.24, SD = 0). 406 

Interestingly, no subcortical sub-networks were recruited by TPP, although previous MACM 407 

and RSFC analyses revealed some TPP-related brain areas in subcortical areas such as the 408 

thalamus and striatum. 409 
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Finally, the clustering profile of the common neural patterns yielded by the 410 

conjunction analysis of SPP and TPP revealed four sub-networks (Fig. 6D): a salience sub-411 

network (i.e., AI, putamen, and bilateral frontal orbital cortex; ED = 9.51, SD = 1.67), a 412 

default-mode sub-network (i.e., bilateral pTPJ and temporal pole; ED = 10.57, SD = 1.43), a 413 

lateral frontotemporal sub-network (i.e., bilateral DLPFC and inferior frontal gyrus; ED = 414 

10.52, SD = 1.60) and a smaller mediofrontal sub-network (i.e., MCC and premotor cortex; 415 

ED = 7.26, SD = 0). 416 
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 420 

Functional characterization of punishment brain regions 421 

Finally, the functional profile of the meta-analytic clusters was characterized using forward 422 

inference analyses based on the meta-data included in the BrainMap database. The goal was 423 

to determine differences and convergences of the functional roles undertaken by the identified 424 

meta-analytic clusters. First, analyses of the brain region from the pooled SOP analysis 425 

revealed that the left AI (Fig. 7A) was functionally associated with both cognitive and 426 

affective domains involving language, pain and reward (Fig. 7D). The left DLPFC (Fig. 7B) 427 

was associated only with processes of the cognitive domain such as reasoning, working 428 

memory and explicit memory (Fig. 7D). Finally, the right AI (Fig. 7C) was particularly 429 

associated with the interoceptive domain involving in particular pain processing (Fig. 7D). 430 

Comparing the likelihood ratios of the two AI clusters, the left AI was more likely related to 431 

cognition, whereas the right AI to affective processing. 432 
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Second, analyses of the brain regions from the single meta-analysis for SPP 436 

demonstrated that the left AI (Fig. 8A) was associated with processes of the cognitive and 437 

affective domains such as language, reward and pain (Fig. 8C), while the right AI (Fig. 8B) 438 

with processes of the interoceptive and affective domains such as pain, gustation, disgust, and 439 

anxiety (Fig. 8C), although only pain survived correction for multiple comparisons. 440 

Comparing the likelihood ratios of the two AI clusters, an opposite functional pattern was 441 

observed for SPP than for the previous SOP analysis: the left AI was here more likely related 442 

to both cognition and affective processing than the right AI. 443 

Finally, analyses of the brain regions from the single meta-analysis for TPP showed 444 

that the left pTPJ (Fig. 9A) was associated with affective and social cognitive domains (Fig. 445 

9C), while the left VLPFC (Fig. 9B) only with processes of a cognitive domain such as 446 

language and social cognition (Fig. 9C). Given these results, SPP and TPP do not specifically 447 

engage different psychological domains. On the contrary, both are associated with similar 448 

affective and cognitive processes, despite the different brain regions related to these processes. 449 

............................................................................................................................................. 450 
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Discussion 454 

SOP represents an important mechanism for social behavior control, enabling cooperation 455 

within large-scale societies among genetically heterogeneous individuals (Fehr and 456 

Fischbacher, 2004a, b). The HPM posits that SPP and TPP engage similar cognitive 457 

processes for blameworthiness recognition but in different manners. Here, we investigated 458 

whether TPP and SPP engage different brain mechanisms associated with putatively different 459 

cognitive processes. As the basis for all subsequent analyses, we first identified the meta-460 

analytic brain regions consistently activated by SPP and TPP (ALE method). We next 461 

determined the consensus connectivity networks of those SPP and TPP brain regions (using 462 

task-based MACM and task-free RSFC) and their sub-network compositions (using 463 

hierarchical analyses). Those steps allowed us to determine commonalities and differences of 464 

the neural patterns associated with SPP and TPP. We finally characterized the functional roles 465 

of these neural activations employing functional decoding analyses. Overall, we demonstrated 466 

that similar affective and cognitive processes are associated with the two forms of SOP. Their 467 

common neural patterns clustered into four functional networks: the salience, default-mode, 468 

frontotemporal, and medial prefrontal networks. However, we also observed a certain degree 469 

of neural and functional specificity for the two forms of SOP ––bilateral AI for SPP, and 470 

VLPFC and pTPJ for TPP–– with partially diverging neural network configurations. 471 

 472 

The psychological processes of brain regions underlying punishment 473 

We first tested the HPM hypothesis that TPP and SPP involve similar cognitive processes but 474 

while the SPP puts more weight on the harm of the transgression, TPP focuses on the 475 

intentions of the transgressor (Krueger and Hoffman, 2016). Our results showed that across 476 

forms of SOP, a set of common brain regions—the bilateral AI and the left DLPFC—were 477 

consistently activated by punishment decisions. While the right AI was more likely related to 478 

affective processing, the left AI and DLPFC were more strongly associated with the cognitive 479 
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domain. These findings mirror the results of the SOP contribution analyses showing that more 480 

TPP studies contributed to the cluster in the DLPFC associated with cognition than SPP 481 

studies, whereas the reverse was true for the AI, especially for the cluster in the right AI 482 

associated with affective processing. 483 

Nonetheless, separate, single analyses for each form of SOP revealed a certain degree 484 

of specificity in the SPP and TPP neural patterns. On the one hand, SPP consistently activated 485 

the bilateral AI and was supported by salience (including the AI), subcortical (e.g., putamen 486 

and thalamus) and lateromedial prefrontal (e.g., MCC and DLPFC) networks. On the contrary, 487 

TPP consistently activated the left pTPJ and VLPFC and was supported by frontotemporal 488 

and frontoparietal networks (including IPL and inferior temporal gyrus). Both clusters were 489 

associated with affective and cognitive domains, although the SPP clusters loaded more on 490 

emotion processing and the TPP clusters on cognition. Finally, SOP did not only engage the 491 

cognitive and affective domains but also an interoceptive domain associated with negative 492 

emotions that might help map the victim’s affective state for empathic concern. Thus, even 493 

though both forms of SOP recruit a common cognitive-affective-motivational network 494 

(Strobel et al., 2011), still differences remain. Such differences might be traced back to the 495 

different role dynamics between victim and punisher in SPP and TPP. 496 

In SPP, the harm of a norm violation might be more salient, as the punisher and the 497 

victim are the same person. Indeed, norm-deviant behaviors are judged as more severe by 498 

those who are penalized by them. For example, individuals are more averse to 499 

disadvantageous than advantageous inequality (Bechtel et al., 2018; Fehr and Schmidt, 1999; 500 

Gao et al., 2018; Loewenstein et al., 1989). This might suggest an egocentric bias in 501 

evaluations of the severity of a norm violation, which might lead to a weighting imbalance 502 

between the transgression’s severity and the transgressor’s responsibility, resulting in harsher 503 

sanctions (Schiller et al., 2014; Sommers and Ellsworth, 2000). Future studies using, for 504 

instance, computational modeling to estimate subject-specific weighting of a transgression 505 
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might consider testing whether individuals weight a transgression’s severity more when they 506 

are the target of the transgression, and whether this stronger weighting correlates with harsher 507 

punishments. 508 

On the contrary, third-party punishers (as long as they have no relationship with the 509 

victim) are in the impartial position to carefully consider and equally weight the 510 

transgression’s severity and the transgressor’s responsibility. Thus, they might show a 511 

reduced bias in integration of harm evaluations and inferences on the transgressor’s intentions 512 

for the determination of blameworthiness (Zhong et al., 2016). 513 

Such differences were also reflected by the different networks the SPP and TPP were 514 

observed to engage. In particular, SPP engaged networks of regions such as the AI, MCC, 515 

DLPFC, SPL and subcortical areas involved in detection of a variety of norm violations, such 516 

as unfairness, dishonesty, defection of cooperation and betrayal (Bellucci et al., 2019a; Feng 517 

et al., 2015; Yang et al., 2019). On the contrary, TPP engaged networks of higher-order 518 

regions such as the IPL, middle frontal gyrus and the temporal cortex involved in 519 

transgression evaluations and responsibility attributions (Bellucci et al., 2017a; Berthoz et al., 520 

2002). These results corroborate the hypothesis that norm violation is judged more severely in 521 

SPP than TPP, while both norm violation and assessment of responsibility are more equally 522 

weighted in TPP as opposed to SPP. 523 

 524 

The neural networks underlying punishment 525 

Next, we tested the HPM prediction that SOP recruits a specific set of domain-general 526 

networks. The salience network (e.g., AI) is supposed to detect the presence of a harmful act, 527 

signaling a norm violation; the default-mode network (e.g., pTPJ) is required to assign 528 

intentions and integrate harm signal to determine the blameworthiness of the wrong-doer; and, 529 

finally, the central-executive network (e.g., DLPFC) is hypothesized to sustain the last steps 530 
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of a punishment choice, namely, the infliction of the adequate sanction (Krueger and Hoffman, 531 

2016). 532 

We found only partial evidence to this hypothesis. SOP brain regions clustered indeed 533 

into three networks. First, we observed the salience network encompassing the AI, MCC and 534 

caudate (Dosenbach et al., 2007; Seeley et al., 2007). The MCC might monitor the contextual 535 

situation and urge to take action, representing negative emotions associated with the 536 

transgression (Hoffstaedter et al., 2014; Lieberman and Eisenberger, 2015). The caudate may 537 

reflect a desire to seek revenge for the suffered norm violation (Singer et al., 2006) or 538 

integrate behaviorally-relevant information for belief updating about the character of those 539 

who show norm-deviant behaviors, as this region is activated during interactions with unfair 540 

or immoral others (Harle et al., 2012; Servaas et al., 2015; Wardle et al., 2013). 541 

The AI might be recruited to signal the unexpected norm violation implied by the 542 

harmful act, as this region signals violations of expectations and prediction errors in the 543 

aversive domain (Allen et al., 2016; Farrer and Frith, 2002; Koelsch et al., 2002). In particular, 544 

activity in the AI is rather related to expectancies of negative events than to the encoding of 545 

negative events as such (Lin et al., 2013). In the social domain, the AI might be recruited in 546 

response to actual or hypothetical violations of social expectancies, such as norm violations 547 

(Feng et al., 2015; Zinchenko and Arsalidou, 2018). For instance, activations in the AI are 548 

elicited by (hypothetical) defections of trust violating a reciprocity norm (Bellucci et al., 549 

2017b; Delgado et al., 2005; van den Bos et al., 2009), and a norm violation more strongly 550 

engages the AI when perpetrated by an in-group member for whom expectations of social 551 

norm compliance are stronger (Wu et al., 2018). 552 

Second, we found a frontoparietal network that largely overlaps with the domain-553 

general central executive network encompassing the SPL and DLPFC. Both SPL and DPLFC 554 

are associative brain regions that allow the integration of cognitive and affective evaluations 555 

for the formation of abstract, conceptual knowledge that might sustain evaluation processes 556 
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related to the determination of the proper sanction (Carter and Huettel, 2013; Culham and 557 

Valyear, 2006; Wood and Grafman, 2003). In particular, the DLPFC has been suggested to 558 

encode social utility signals that reflect social preferences informative of an individual’s 559 

propensity to engage in prosocial behaviors or to enforce social norm compliance (Holper et 560 

al., 2018; Ruff et al., 2013). This region is activated during norm-compliant behaviors 561 

triggered by punishment threats (Spitzer et al., 2007) and might take a specific role in the 562 

execution and selection of the appropriate punishment beyond evaluations of blameworthiness. 563 

Indeed, stimulation-induced disruption of the DLPFC impairs norm-enforcing behaviors 564 

leaving the recognition of the wrong-doing intact (Buckholtz et al., 2015; Knoch et al., 2006). 565 

However, the HPM also posits that to determine the perpetrator’s blameworthiness, 566 

weighting the severity of the norm violation is not sufficient for the choice of the proper 567 

punishment. Inferences on the transgressor’s intentions need to be made, which are supposed 568 

to be carried out by the default-mode network, especially the pTPJ. Indeed, a basic tenet in 569 

criminal law poses that the act makes a person guilty only if the mind is also guilty (Shen et 570 

al., 2011). Accordingly, momentary disruption of the pTPJ via transcranial magnetic 571 

stimulation makes participants judge attempted harms as more permissible (Young et al., 572 

2010). 573 

We found evidence for the involvement of the default-mode network only in the 574 

conjunction analysis between the separate functional profiles of SPP and TPP. Given the 575 

heavy engagement of mentalizing brain regions by TPP, the results of this conjunction 576 

analysis might likely be driven by the importance of mentalizing regions in TPP. In fact, our 577 

ALE analysis revealed that TPP strongly engaged the pTPJ––a central region for inferences 578 

on the others’ intentions (Saxe and Kanwisher, 2003; Saxe and Powell, 2006)–– and the 579 

VLPFC ––a pivotal region in regulatory processes for prosocial behaviors (Fouragnan et al., 580 

2013; Souza et al., 2009; Yang et al., 2019). In particular, in TPP, the pTPJ might weight the 581 

intentions and beliefs of the transgressors during the wrongdoing, while the VLPFC might 582 
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dampen the harm-driven urge of harsh punishments promoting fairer sanctions. On the 583 

contrary, no mentalizing brain regions were found for SPP. 584 

 585 

Limitations 586 

This meta-analysis provided an overview of the psychological processes of brain regions and 587 

neural networks involved in different types of SOP. However, there are some limitations to 588 

our study that deserve discussion. First, variations in the intentionality of a norm violation 589 

(e.g., accidental vs. attended harm) might help better understand how the transgression’s 590 

severity and the transgressor’s responsibility are weighted for the determination of 591 

blameworthiness. This might, for instance, clarify the role of the default-mode network in 592 

SPP as well, as this neural network was preferentially engaged by TPP in the current work. 593 

Furthermore, it might elucidate the role of the amygdala and medial PFC, which, contrary to 594 

the HPM predictions, were not found in the current study. The HPM proposes that the 595 

amygdala signals the severity of the inflicted harm, whereas the medial PFC evaluates the 596 

transgressor’s blameworthiness integrating information about the transgression’s severity and 597 

the transgressor’s responsibility. One reason for this null finding might lie in the fact that 598 

fMRI studies have not so far disentangled evaluations of the transgression’s harm from 599 

evaluations of the transgressor’s blameworthiness. 600 

Second, it is still an open question whether different psychological processes and 601 

neural patterns are evoked by hypothetical and actual punishment decisions. In particular, 602 

punishment decisions have been studied using either vignettes where participants are asked to 603 

make hypothetical punishment decisions or economic games where participants make actual, 604 

costly punishment decisions. Due to the paucity of studies, we were not able to address this 605 

open question, but we here notice that there are already conflicting results in the literature that 606 

might be due to these two different paradigms. For instance, in one study, impairment of 607 

punishment for wrongful acts could be experimentally achieved only via disruption of the 608 
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right DLPFC (Knoch et al., 2006), whereas in a more recent study, no lateralization effects 609 

were found after bilateral DLPFC disruption, despite successful punishment reduction 610 

(Buckholtz et al., 2015). The use of different paradigms might well explain these different 611 

findings, since the former study used an economic game while the latter asked participants to 612 

make hypothetical decisions. Thus, participants in the economic game might have faced a 613 

more conflicting situation that required reliance on the right DLPFC, which is central to 614 

control adjustments in high conflict situations (Mansouri et al., 2009). Future studies are still 615 

needed to better understand how these different paradigms and their associated psychological 616 

components and neural signatures interact with each other to bring about a punishment 617 

decision. 618 

Despite these limitations, we identified a consensus connectivity network that entails 619 

candidate brain regions for the representations of the core functional mechanisms underlying 620 

SOP. This network might be used in future studies to test how it instantiates the processes that 621 

bring about a punishment decision. For instance, neural activity within this network might be 622 

computed for predictions of individual decisions to punish wrongdoing. Predictive models 623 

based on this network might yield better performance than models based on whole-brain 624 

activity (Bellucci et al., 2019b) or domain-general networks that are likely unrelated to the 625 

punishment phenomenon. Finally, the identification of this network might provide insights 626 

into investigations of individual differences in norm violations and clinical traits such as 627 

psychopathology and social phobia (Blair et al., 2010; Veit et al., 2010). 628 

 629 

Conclusions 630 

Taken together, our results demonstrated that different forms of SOP engage complementary 631 

neural networks with converging functional roles. These neural networks converged on 632 

common connectivity patterns revealing an extended, consensus connectivity network. 633 

However, given the complex and fine-grained network organization yielded by the separate 634 
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analyses for each form of SOP, the HPM in its preliminary formulation might be too coarse 635 

and requires revision. Thus, future work is still needed to experimentally clarify the functional 636 

role and interactions of these brain regions and networks. By highlighting the specific neural 637 

and functional cliques that underlie SOP, our work will help future investigations in shaping 638 

research hypotheses to shed light on one of the most peculiar human behaviors. 639 

  640 
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Figure Legends 931 

Figure 1. Meta-analytic results. Results of meta-analytic ALE analyses for SOP (A), SPP (B) 932 

and TPP (C). The depicted brain regions are consistently activated clusters across published 933 

fMRI studies that survived correction for multiple comparisons controlling for cluster-level 934 

familywise error (cFWE < .05). Finally, overlaps of the three meta-analytic maps (D) are 935 

shown to compare the anatomical extent of the observed clusters.  936 

L, left; R, right; ALE, activation likelihood estimation; fMRI, functional magnetic resonance 937 

imaging; ∩, conjunction; DLPFC, dorsolateral prefrontal cortex; AI, anterior insula; VLPFC, 938 

ventrolateral prefrontal cortex; SOP, social punishment; SPP, second-party punishment; TPP, 939 

third-party punishment. 940 

 941 

Figure 2. Task-free, resting-state functional connectivity (RSFC) for SOP. Regions 942 

significantly connected to the three clusters consistently activated for SOP, namely, the left AI 943 

(red), left DLPFC (green) and right AI (blue) based on RSFC analyses. 944 

L, left; R, right; ∩ , conjunction; SOP, social punishment; AI, anterior insula; DLPFC, 945 

dorsolateral prefrontal cortex; cluster-level familywise error (cFWE) < .05. 946 

 947 

Figure 3. Task-free, resting-state functional connectivity (RSFC) for SPP. Regions 948 

significantly connected to the three clusters consistently activated for SPP, namely, the left AI 949 

(red) and right AI (green) based on RSFC analyses. 950 

L, left; R, right; ∩, conjunction; SPP, second-party punishment; AI, anterior insula; cluster-951 

level familywise error (cFWE) < .05. 952 

 953 
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Figure 4. Task-free, resting-state functional connectivity (RSFC) for TPP. Regions 954 

significantly connected to the three clusters consistently activated for TPP, namely, the left 955 

pTPJ (red) and left VLPFC (green) based on RSFC analyses. 956 

L, left; ∩, conjunction; TPP, third-party punishment; pTPJ, posterior temporoparietal junction; 957 

VLPFC, ventrolateral prefrontal cortex; cluster-level familywise error (cFWE) < .05. 958 

 959 

Figure 5. Consensus connectivity network. Results of consensus connectivity map for SOP 960 

(A) and overlaps of consensus connectivity maps for SPP and TPP (B). 961 

SOP, social punishment; TPP, third-party punishment; SPP, second-party punishment; L, left; 962 

R, right; SPL, superior parietal lobule; DLPFC, dorsolateral prefrontal cortex; FPC, 963 

frontoparietal cortex; AI, anterior insula; MCC, middle cingulate cortex; AG, angular gyrus; 964 

Put, putamen; STG, superior temporal gyrus. 965 

 966 

Figure 6. Hierarchical clustering analyses. Results from the clustering analyses based on 967 

the RSFC profiles of the meta-analytic clusters for SOP (A), SPP (B), TPP (C) and for the 968 

overlapping regions of the SPP and TPP results (D).  969 

L, left; R, right; AG, angular gyrus; Thal, thalamus; Caud, caudate; Cbl, cerebellum; IPL, 970 

inferior parietal lobule; SPL, superior parietal lobule; IFG, inferior frontal gyrus; OrbC, 971 

orbital cortex; MTG, middle temporal gyrus; MCC, middle cingulate cortex; PreMC, 972 

premotor cortex; Put, putamen; STG, superior temporal gyrus; TP, temporal pole; MFG, 973 

middle frontal gyrus; PreG, precentral gyrus; ITG, inferior temporal gyrus. 974 

 975 

Figure 7. Functional decoding analyses for SOP. Functional profiles of the left AI (A), left 976 

DLPFC (B) and right AI (C) and their functional decoding (D) based on meta-categories in 977 
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the BrainMap database. Around the spider plot are the behavioral domains yielded by forward 978 

inference, i.e., categories of mental operations likely to be isolated by the experiments in the 979 

BrainMap database. In parentheses are the subcategories that specify the behavioral domains. 980 

Depicted values are likelihood ratios.  981 

L, left; R, right; SOP, social punishment; AI, anterior insula; DLPFC, dorsolateral prefrontal 982 

cortex; *FDR < .05. 983 

 984 

Figure 8. Functional decoding analyses for SPP. Functional profiles of the left AI (A) and 985 

right AI (B) and their functional decoding (C) based on meta-categories in the BrainMap 986 

database. Around the spider plot are the behavioral domains yielded by forward inference, i.e., 987 

categories of mental operations likely to be isolated by the experiments in the BrainMap 988 

database. In parentheses are the subcategories that specify the behavioral domains. Depicted 989 

values are likelihood ratios. 990 

L, left; R, right; SPP, second-party punishment; AI, anterior insula; *FDR < .05. 991 

 992 

Figure 9. Functional decoding analyses for TPP. Functional profiles of the left AI (A) and 993 

right AI (B) and their functional decoding (C) based on meta-categories in the BrainMap 994 

database. Around the spider plot are the behavioral domains yielded by forward inference, i.e., 995 

categories of mental operations likely to be isolated by the experiments in the BrainMap 996 

database. In parentheses are the subcategories that specify the behavioral domains. Depicted 997 

values are likelihood ratios. 998 

L, left; TPP, third-party punishment; pTPJ, posterior temporoparietal junction; VLPFC, 999 

ventrolateral prefrontal cortex; *FDR < .05. 1000 
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Table Legends 1002 

Table 1. ALE meta-analysis results for punishment. ALE main-effect results for social 1003 

punishment, second-party punishment and third-party punishment (cFWE < .05). The right 1004 

anterior insula cluster was also more significantly activated for second-party punishment than 1005 

third-party punishment in contrast analyses. DLPFC, dorsolateral prefrontal cortex; VLPFC, 1006 

ventrolateral prefrontal cortex; IFG, inferior frontal gyrus; pTPJ, posterior temporoparietal 1007 

junction; MTG, middle temporal gyrus; BA, Brodmann area; anatomical assignment based on 1008 

the Anatomy toolbox in parentheses; L, left; ALE, activation likelihood estimation; MNI, 1009 

Montreal Neurological Institute. 1010 
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